Bigger, faster, stronger and better - man seems to thrive on using superlatives, especially in the realm of technology. With mobiles and computers, the trend seems to be speedier and smaller. Then there are supercomputers, which are the brains or "Einsteins" of the computing world. Supercomputers are faster, more powerful and very large, when compared to their everyday counterparts. Supercomputers have a wide range of uses in complex and data consuming applications. Where did it all began? To answer that question, read on for a brief history of supercomputers.

The Beginning of the Supercomputer Age - The 1960s

Livermore Advanced Research Computer
In 1960, the UNIVAC LARC (Livermore Advanced Research Computer) was unveiled. It cannot be considered as the first supercomputer, since its configuration was not as powerful as expected but rather is considered the first attempt at building such a machine. Its inventor was Remington Rand. At the time of its invention, it was the fastest computer around. Following is a list of features of UNIVAC LARC:
  1. Had 2 Central Processing Units (CPU's) and one I/O (input/output) processor.
  2. Had a core memory power of 8 banks, which stored 20,000 words.
  3. Accessing memory speed was 8 microseconds and cycle time was 4 microseconds.
1961 saw the creation of the IBM 7030 or Stretch. In the whole rat race to build the first supercomputer and sell it, IBM had designs and plans but lost the first contract to the LARC. Fearing that the LARC would emerge as the ultimate winner, IBM promised a very powerful machine and set high expectations, that ultimately it could not live up to. The 7030 was compared to an earlier IBM model, the IBM 7090, which was a mainframe computer released in 1959. Its computational speed was projected to be 100x times faster than the IBM 7090 but once made, it was only 30x times faster.

Its selling price was greatly reduced, few models were sold and this machine was a major embarrassment for IBM. But this machine contributed greatly to key computer concepts, such as multiprogramming, memory interleaving and protection, 8-bit byte and instruction pipelining. IBM implemented these concepts in their upcoming models, spawning successful machines in the business and scientific lines of use. Such concepts are used today in microprocessor systems, such as the Intel Pentium and the Motorola/IBM PowerPC.

CDC 6600
What marks the beginning of a species or objects evolution? One success or one being that surpassed the others to form the prototype from which future generations would be formed. You could say the evolution of supercomputers began with the CDC 6600. It was designed by Seymour Cray, the man regarded as the creator of supercomputers, for the Control Data Corporation, in 1964. A few of the features of CDC 6600 are listed below:
  1. 1 CPU for arithmetic and logical operations, different simpler processors (I/O processors or peripheral processors) for other tasks.
  2. Introduced Reduced Instruction Set Computer (RISC) concept, where instruction set of the main CPU was smaller, different processors could work in parallel and clock speed was very fast (10 MHz).
  3. Introduced logical address translation.
The 6600 had a performance figure of 1 MFLOP (10 6 floating-point operations per second), making it 3 times faster that the Stretch and it reigned supreme as the world's fastest computer till 1969.

Timeline of Supercomputer Evolution

CDC 7600 was released. It surpassed the 6600 with a clock speed of 36.4 MHz and used a pipelined scalar architecture. It surpassed the 6600 by 10x times, with its performance figure of 10 MFLOPS.

Seymour Cray left CDC to form his own computing firm, Cray Research.

CDC released the STAR-100, a supercomputer with a vector processor. It had a performance speed of 100 MFLOPS.

The Cray-1 was unveiled, a machine with a vector processor and had a clock speed of 80 MHz and a performance figure of 160 MFLOPS. This system was a 64-bit system and had its own OS, assembler and used a FORTRAN compiler.

The Cray X-MP was unveiled. This machine was designed by Steve Chen and used a shared-memory parallel vector. Its clock speed was 105 MHz or 9.5 nanoseconds. This was the first multi processor supercomputer.

Cray-2 was born. This machine exceeded the MFLOPS factor and touched GFLOPS (1000 MFLOPS) with a performance figure of 1.9 GFLOPS. It had 4-8 processors in a completely new design and structure, with pipelining and a high memory latency.

The Fujitsu Numerical Wind Tunnel was created. It had a vector parallel architecture and its sustained performance factor was 100 GFLOPS, with a clock cycle time of 9.5 nanoseconds. It had 166 vector processors, each with a speed of 1.7 GFLOPS.

HITACHI SR2201 used a distributed memory parallel system to attain a performance of 600 GFLOPS from 2048 processors.

Intel and Sandia Labs jointly created the ASCI RED. This mesh-based machine was designed for extremely large parallel processing and had 9298 Pentium II processors. Its performance touched 1.34 TFLOPS, making it the first supercomputer to do so and it remained the king of its kind, till the year 2000. It was also a very scalable supercomputer, with its processors found in most home computer systems.

The Earth Simulator was designed to simulate the world's climatic conditions, on both land and sea, as well as atmospheric. It was built by NEC and had 8 vector processors. Its performance factor was 131 TFLOPS.

The first machine from the IBM Blue Gene supercomputer series, was the Blue Gene/L. This machine started out with a peak performance of 280 TFLOPS. There are 4 main Blue Gene projects and 27 supercomputers using the architecture, which uses approx 60,000 processors.

The IBM Roadrunner is a hybrid supercomputer, with 2 different processor architectures working in tandem. It uses Red Hat Enterprise Linux and Fedora as its OS and its performance is 1.456 petaflops at peak.

Tianhe-I was a record breaker in so many ways. It was China's first supercomputer to enter the Top500 list of supercomputers. It has a performance factor of 2.566 PFLOPS, which made it the fastest supercomputer till 2011.

The reigning champion amongst supercomputers is the K computer, a Japanese supercomputer, which touches performance rates of 8.162 PFLOPS. It uses 68,544 8-core processors and its construction is still being completed.

It's clear to see that from the march of time, the configuration and strengths of one supercomputer model has served to enhance and result in a better and more advanced newer model. Another point to note, is that the supercomputer of yesteryear is more backward that the desktop of today!